
FireAxe: Partitioned FPGA-Accelerated Simulation
of Large-Scale RTL Designs

Joonho Whangbo
UC Berkeley

joonho.whangbo@berkeley.edu

Edwin Lim
CMU

eglim@andrew.cmu.edu

Chengyi Lux Zhang
UC Berkeley

iansseijelly@berkeley.edu

Kevin Anderson
UC Berkeley

kevinand@berkeley.edu

Abraham Gonzalez
UC Berkeley

abe.gonzalez@berkeley.edu

Raghav Gupta
UC Berkeley

raghavgupta@berkeley.edu

Nivedha Krishnakumar
UC Berkeley

nivedha@berkeley.edu

Sagar Karandikar
UC Berkeley

sagark@eecs.berkeley.edu

Borivoje Nikolić
UC Berkeley

bora@eecs.berkeley.edu

Yakun Sophia Shao
UC Berkeley

ysshao@berkeley.edu

Krste Asanović
UC Berkeley

krste@berkeley.edu

Abstract—Pre-silicon validation and end-to-end system evalua-
tion are integral parts of hardware development as they provide
architects with insights about the complex interactions between
various hardware components, system software, and application
code. Although this process can be accelerated using FPGAs as
a simulation host, existing platforms fall short when the resource
requirements of a custom hardware design exceed a single FPGA.

We present FireAxe, an open-source FPGA-accelerated RTL
simulation platform that supports push-button user-guided parti-
tioning across multiple FPGAs, using a compiler called FireRip-
per. Given a partition point, FireRipper automatically maps a
monolithic RTL design onto multiple FPGAs while providing
hardware designers quick feedback about the partition interface
and expected simulation performance. Furthermore, FireRipper
enables users to choose between an exact-mode which provides
cycle-exact results with RTL-level fidelity, or a fast-mode that
improves simulation rate while sacrificing fidelity only at the
partition boundary. Built on FireSim, FireAxe preserves the
ability to elastically scale simulations from on-premises FPGAs
to cloud FPGAs. For example, pulling out a core from a system-
on-chip (SoC) onto a separate FPGA, we achieve simulation rates
of 1.6 MHz using on-premises FPGAs connected by direct-attach
cables and 1 MHz on AWS F1 FPGAs using peer-to-peer PCIe.

To show FireAxe’s ability to enable pre-silicon performance
validation at unprecedented scale, we show several case studies.
First, we replicate full-stack system-level effects such as latency
spikes from garbage collection in a Golang application on an SoC
containing 4 out-of-order (OoO) cores. We also boot Linux on, to
our knowledge, the largest OoO core ever cycle-exactly simulated
in academia. Lastly, we simulate a system-on-chip containing
24 OoO cores mapped onto five datacenter-class FPGAs. We
discover an RTL bug when trying to run Linux user-space
applications that did not appear with less substantial software
stacks. This was discovered in less than 2 hours using FireAxe
and would have taken weeks in a commercial software RTL
simulator.

Index Terms—computer simulation, RTL simulation, FPGAs,
performance analysis, computer architecture, scalability

I. INTRODUCTION

The ever increasing demands of sophisticated applications
from the edge to the cloud is driving the design of increasingly

complex systems with larger die sizes in advanced technolo-
gies. Designing hardware at this scale is challenging due to
the long turnaround times of capturing end-to-end system-level
performance metrics, among many other design verification
and validation tasks. While performance evaluation of a single
module can quickly provide performance results in isolation,
system-level performance validation, where the module is
added into the full design, is required to measure realistic
performance metrics.

Traditionally, abstract simulators have addressed this prob-
lem by providing a balance between simulation performance,
fidelity, and flexibility. However, using abstract simulators is
challenging due to the increasing amount of specialization in
modern hardware designs. This is due to the fact that abstract
simulators require validation, which is challenging without an
RTL source-of-truth. Given an RTL source of truth, previous
work such as FireSim [19] has enabled cycle-exact1 simulation
at 10s to 100s of MHz. This enabled architects to run realistic
benchmarks and obtain high-fidelity results but requires that
the design fits in a single FPGA.

In this work, we present FireAxe, an open-source2 FPGA-
accelerated RTL simulation framework built on FireSim that
performs push-button user-guided partitioning of arbitrary
hardware designs (e.g., a system on chip) across multiple
FPGAs, using a compiler called FireRipper. FireRipper auto-
matically partitions the design by extracting the user-specified
modules into separate FPGA partitions while providing users
quick feedback about the partition interface and expected
simulation performance. In addition, it supports two modes
that users can choose from: an exact-mode that provides cycle-
exact simulation results with full RTL-level fidelity, or a fast-

1Cycle-exact means that the cycle numbers obtained by FireSim will be
identical to the numbers obtained by running the same workload on a taped-
out chip built from the same RTL.

2This will be open-source/upstreamed to FireSim (docs: https://fires.im/
github: https://github.com/firesim/firesim).

mode that provides higher simulation performance by sacrific-
ing simulation fidelity only at the partition boundary. FireAxe
supports both on-premises and cloud FPGA platforms such as
AWS EC2 F1, preserving FireSim’s ability to run large-scale
simulations without paying the upfront cost of purchasing
FPGAs. On AWS EC2 F1 instances, the communication
between FPGAs occurs directly between FPGAs using peer-to-
peer PCIe, reaching up to 1 MHz target simulation frequency.
In on-premises settings, FPGA-to-FPGA communication is
achieved by cheap (∼$25), off-the-shelf QSFP cables, which
enables a target simulation frequency of up to 1.6 MHz.
Lastly, to the best of our knowledge, FireAxe is the first
work to identify the synergy of multithreaded simulation and
partitioning, which can be used to amortize the inter-FPGA
communication latency in cases when there are duplicate
modules within the target hardware.

To demonstrate the capabilities of FireAxe, we perform a
number of case studies. First, we simulate an SoC with 24
out-of-order (OoO) cores connected in a ring topology, by par-
titioning the SoC across five Xilinx Alveo U250 FPGAs [29]
and find an RTL bug three billion cycles into the simulation.
Simulating this SoC with FireAxe enabled us to discover the
RTL bug in less than two hours. Attempting to find this bug in
software RTL simulation would have been impractical, given
that a commercial software RTL simulator would have taken
weeks to reach the bug.

Next, to show the flexibility of FireRipper as well as the
new microarchitectural design space that can be explored,
we model an OoO core (synthesis area of 1.56mm2 in a
commercial 16nm technology) that does not fit in a single
Xilinx Alveo U250 FPGA. We split the core in half, with the
core’s backend (register renaming, physical register file, exe-
cution units) and load-store-units on one FPGA while placing
the core’s frontend (instruction fetch, branch prediction, fetch
buffer) and the memory subsystem on another FPGA. To the
best of our knowledge, this is the largest OoO core ever cycle-
exactly simulated in academia.

Finally, to demonstrate that FireAxe can be used to capture
complex interactions between the application, system software,
and hardware pre-silicon, we reproduce two effects that can
only be observed in a full-system multi-core SoC simulation.
To investigate the microarchitecture-level interactions between
cores, caches, buses, and a network interface controller (NIC),
we study how scaling the number of cores (up to 12) affects the
leaky-DMA problem [15]. In addition, we reproduce latency
spikes induced by garbage collection for the Go programming
language [23] by simulating an SoC containing four OoO
cores.

II. BACKGROUND

FPGA-based simulators require decoupling the simulated
target design’s clock from the host-FPGA clock to obtain
accurate performance results. In this section, we explain how
LI-BDNs are used to achieve host-clock decoupling, and
review FireSim [19], an FPGA-accelerated simulator that uses
LI-BDNs to obtain cycle-exact simulation results.

fireFSM

oFSM

oFSM

V

R
D

V

R
D

Input
Channels

Output
Channels

Fig. 1: LI-BDN. The solid lines indicate the original circuit
while the dotted lines are extra circuitry added to generate the
LI-BDN.

A. LI-BDNs

Directly emulating ASIC RTL on an FPGA leads to in-
correct performance measurements due to the mismatch in
FPGA frequency and taped-out ASIC frequency. For instance,
an ASIC design targeting 1 GHz experiences 100 cycles of
DRAM access latency when the backing DRAM latency is
100ns. However, if that unmodified RTL is mapped to an
FPGA at 100 MHz with the same backing DRAM attached to
the FPGA, then the DRAM access latency will be reduced to
10 cycles, resulting in inaccurate performance measurements.
To solve this, latency-insensitive bounded dataflow networks
(LI-BDN) [24] are used to decouple the target design’s clock
from the host FPGA clock by controlling when the target
design can advance a cycle. From this point on, we refer to
the ASIC RTL that is being simulated as the target design,
while we refer to the platform that runs the simulation as the
host.

Figure 1 is an LI-BDN where the solid lines represent
the original target design and the dotted lines represent extra
circuitry which controls when the target design can advance
a cycle. The inputs and outputs of the target design interface
with latency-insensitive channel queues that hold tokens or
the data to be sent to/from the target design. Each output
channel has a single-bit finite-state-machine (FSM) that waits
until all the combinationally connected input channels have a
valid token. When valid tokens are present, an output token is
enqueued into the corresponding output channel. Furthermore,
another FSM (fireFSM in Figure 1) advances a cycle when
all the input channels have a valid token and all the outputs
have fired or are firing. While advancing a cycle, all the input
tokens are dequeued and the output FSMs are initialized.

B. FireSim

FireSim [19] is an example of applying this form of decou-
pling. FireSim is an open-source, FPGA-accelerated, cycle-
exact hardware simulation platform that enables simulating
RTL designs on FPGAs at 10s to 100s of MHz. FireSim con-
tains a compiler called Golden Gate (GG) [20] that operates
on FIRRTL [18]. FIRRTL is an intermediate representation
(IR) for digital circuits. A FIRRTL description of a design

is structured as an abstract syntax tree (AST), where nodes
of the tree represent different elements in the digital circuit.
By traversing the AST, the compiler can perform various
operations such as modifying the design or performing static
analysis.

The main transformation or compiler pass in GG, called
FAME-1 [22], transforms the target design into an LI-BDN by
attaching communication channels to the top-level I/O ports
and adding FSMs to control when the target design can ad-
vance a cycle. Additionally, GG supports other optimizations
to save FPGA area at the cost of simulation time. For example,
another transform, called FAME-5, enables duplicate modules
to be multi-threaded at the simulator level. For multi-threaded
designs, combinational logic is shared across modules while
sequential elements are replicated; the scheduler then selects
the sequential elements to update for a certain cycle. Since
FPGA LUT resources are a key resource-constraint when
mapping ASIC designs onto FPGAs, multi-threading helps
reduce the LUT utilization while increasing the utilization of
relatively lesser-used BRAMs. In Section VI-B, we explain
how we use FAME-5 to hide the communication latency
between partitioned designs on multiple FPGAs.

III. FIRERIPPER: FIREAXE’S COMPILER

In this section, we present FireAxe’s compiler, FireRipper,
and the partitioning modes and module selection modes that it
exposes when automatically constructing an FPGA-accelerated
simulation. FireRipper is integrated as a part of GG and
runs before the FAME transformations. Users can disable
FireRipper to use the original FireSim flow, or enable it to
perform partitioned simulations.

A. Partitioning Modes

FireRipper supports two partitioning modes that allow the
user to trade off simulation speed and simulation fidelity:
exact-mode and fast-mode.

1) Exact-Mode: In the exact-mode, FireRipper partitions
the SoC onto multiple FPGAs without modifying the target
RTL to obtain a cycle-exact simulation with respect to the
target RTL. One challenge is that when the partitioned inter-
face contains combinational logic between the input and output
ports, a token exchange must occur multiple times on separate
input/output channels for the simulation to advance without
deadlocking [9]. This is not an issue in the monolithic FireSim
case as the combinational logic of the target is contained
within a single LI-BDN, enabling the simulation to execute the
logic in a single host FPGA cycle no matter how complicated
the logic is.

Figure 2a depicts the case where all the input ports are
concatenated and attached to a single LI-BDN channel and
vice-versa for the output ports. This results in a deadlock due
to the following reasons. For LI-BDN 1 to generate an output
token, it needs to compute the output of adder P (port D) which
is combinationally dependent on port A. Hence, it needs to wait
until LI-BDN 2 sends a token containing the value for port
A. For LI-BDN 2 to generate an output token, it also needs

+ +
+

B

A

D

2

1

6

TokensLI-BDN 1 LI-BDN 2

?

?

1

X

2
YC

P

Q

(a) I/O channels are not separated, causing the simulation to deadlock.

+ +
+

B : Src In

A : Sink In

D : Sink Out

2

1

6

TokensLI-BDN 1 LI-BDN 2

1

1

7
2

3
2

1 7
3

X

2 9
3

YC : Src Out

(b) I/O channels are separated, enabling the simulation to make
forward progress even though the partition boundary contains com-
binational logic.

Fig. 2: Exact-Mode. Modeling combinational logic between
LI-BDNs requires multiple token exchanges on separate I/O
channels to advance a single cycle without deadlocking.

to compute the output of adder Q which is combinationally
dependent on port C. However, the token containing the value
of port C cannot be sent until the value of port D is computed,
resulting in a circular dependency between the tokens.

To avoid deadlocking the simulation, we first have to
separate the I/O ports that have combinational dependencies
(sink ports) from the ones that do not (source ports) as in Fig-
ure 2b. FireRipper automates this process by running multiple
passes. First it topologically sorts the modules according to
their position in the module hierarchy. Then it traverses the
FIRRTL AST of each module identifying statements that are
combinationally dependent to each other. Once this is done for
a module, it can identify the output ports of the module that
are combinationally dependent on its input ports. Now that
FireRipper has differentiated the sink ports from the source
ports, it concatenates all the input wires of the sink/source
ports and attaches an LI-BDN input channel to the aggregated
wires and vice-versa for output ports.

At this point, we can compose the LI-BDNs and start exe-
cuting the simulation. The simulation makes forward progress
like so:

1) During step 1, LI-BDN 1 generates an output token
on the source out channel as it does not have any
combinational dependencies to any of the input chan-
nels. The token value is one as it is the value of
register X. Furthermore, assuming that the length of the
combinational dependency chain between the input and
output ports is less than or equal to two, it receives an

input token on the sink in channel. This is because the
combinational dependency chain between the sink in and
sink out ports is already two (port A to port D), implying
that the sink in ports are all connected to sequential
elements in LI-BDN 2. The token value is 2 as it is the
value of register Y.

2) In step 2, LI-BDN 1 generates an output token on the
sink out channel as the combinationally dependent sink
in channel received an input token in the previous step.
The value of the token is the output of the combinational
logic which is 3. Similarly, LI-BDN 2 generates an
output token of value 7 on the source in channel.

3) Finally in step 3, both LI-BDNs consumes the input
tokens and they each update their register values to 7
and 9 respectively.

4) By repeating the above three steps, the simulation can
run to termination.

As can be seen in the above example, by having separate
LI-BDN channels for the source and sink ports, the initial
seed token is generated on the source output channel by
construction, thereby eliminating deadlocks. Furthermore, two
token transfers were required to simulate a single target cycle.

One assumption that FireRipper makes in the above process
is that the length of the combinational dependency chain
between the input and output ports is less than or equal to
two. This is because the length of the chain corresponds to
the number of separate input/output channels as well as the
number of inter-FPGA link crossings to simulate a single
cycle. Hence, supporting these partitioning boundaries not
only complicates the compiler, but will result in low simulation
performance as the link has to be crossed multiple times to
simulate a single cycle. When the length of the dependency
chain is larger than 2—for example in a case where an
output port A is combinationally dependent on an input port
B which is again combinationally dependent on an output
port C—FireRipper terminates compilation while providing
the user with the chain of combinational ports that caused
the termination.

As discussed below, we cannot use fast-mode in cases
where the partition boundary is not latency-insensitive. In these
cases, we can utilize the exact-mode which supports higher
partitioning flexibility. The exact-mode can also be used in
cases where simulating the design with full fidelity is crucial:
e.g., performance validation.

2) Fast-Mode: As mentioned above, simulating combina-
tional logic between LI-BDNs placed on separate FPGAs
requires multiple FPGA-to-FPGA link crossings to simulate
a single target cycle, which can harm simulation performance.
In FireAxe’s fast-mode, we present a method to speed up
simulation performance by nearly 2× over the exact-mode.
The fast-mode is limited to partitioning boundaries that are
latency-insensitive, and FireRipper no longer has to worry
about the length of the combinational dependency chain as
in the exact-mode.

Instead of differentiating the ports by whether they have
combinational dependencies or not, in the fast-mode, FireRip-

Valid

Data

Ready Si
nk

[0
]

Si
nk

 [1
]

Sr
c[

0]

LI-BDN 1 LI-BDN 2
D0

V0

D1

V1

R1 R0

Tokens

Src Queue Sink Queue

(a) Fast-mode without module boundary modifications.
Data Values

R1R0Sink[1]Sink[0]V1D1V0D0Src[0]

Seed (0)-EmptyEmptySeed (0)Seed (X)--A1

Si
m

ul
at

io
n

St
ep -0EmptyEmpty--1AA2

0-EmptyEmpty1A--A3
-1EmptyA--1AA4
1-EmptyA1A--A5
-0AA--0FEmpty6

(b) Step by step execution of Figure 3a. The y-axis indicates each step
at which tokens are moved around, while the x-axis corresponds to
each label in Figure 3a.

V
D

R Sk
id

 B
uf

Src Queue Sink Queue

LI-BDN 1 LI-BDN 2
D0

V0

D1

V1

R1 R0

Sr
c[

0]

Si
nk

[0
]

Si
nk

 [1
]

(c) Modifying the target boundary to preserve backpressure on a
ready-valid interface.

Fig. 3: Fast-Mode. To preserve transactions going through the
ready-valid interface, FireRipper inserts skid-buffers on the
ready-valid sink side while lowering the valid signal until the
received ready signal is high on the ready-valid source side.

per simply concatenates all the input ports and attaches an
input LI-BDN channel to the concatenated wires and vice-
versa for the output ports. However this can cause simulation
deadlocks, as seen in Section III-A1, when there are combina-
tional dependencies between the ports. This can be overcome
by manually seeding each side of the LI-BDN with a single
initial token. This prevents deadlocks as well as enabling each
FPGA partition to run a single cycle in parallel before they
produce an output token to be sent to the other side.

One problem with this approach is that inserting a seed
token on all LI-BDNs at initialization time is equivalent to
injecting a single cycle of latency between the partitioned
interfaces. This is because an output token produced on one
LI-BDN at cycle N will be seen at cycle N + 1 on the
other LI-BDN since one token will always be in front of the
token generated at cycle N . While this is not a problem for
latency-insensitive interfaces that are credit based, this breaks
the backpressure logic between ready-valid interfaces.

Figure 3a and Figure 3b shows where inserting a seed

token when partitioned across a ready-valid interface can
break backpressure. Each row of Figure 3b corresponds to a
simulation step while each column corresponds to the values
in Figure 3a. Note that there is an extra token in between
the LI-BDNs in Figure 3a compared to the exact-mode case
to indicate that one cycle of latency is injected between the
interfaces. The simulation progresses like so:

1) In step 1, we seed the input of LI-BDN 1 with a R1
token with a value of 0, and the input of LI-BDN 2
with a (D1, V1) token with a value of (X, 0).

2) In step 2, LI-BDN 1 consumes the R1 token and
generates an output token where (D0, V0) is (A, 1)
as Src[0] is a valid queue entry with a value of A.
At the same time, LI-BDN 2 also consumes the (D1,
V1) token and generates the R0 token where the value
is zero because the incoming V1 is also a zero. Note
that by seeding each side with an initial input token,
both sides can simulate a single cycle in parallel without
having to cross the inter-FPGA link multiple times,
resulting in a higher simulation performance compared
to the exact-mode.

3) In step 3, tokens (D0, V0) and R0 are sent to the
other side, becoming into the (D1, V1) and R1 tokens
respectively.

4) Steps 4, 5, and 6 are the repetition of steps 1, 2, 3 in
Figure 3b, with the new values.

At step 6, we can see the backpressure logic breaking as the
sink queue received two valid entries even though the source
queue only had one.

To overcome the above problem, FireRipper transforms the
target interface to sustain backpressure between LI-BDNs with
latency in between as in Figure 3c. First, FireRipper inserts
a skid buffer on the ready-valid sink side to prevent requests
from getting lost. Next, FireRipper changes the valid signal
to valid & ready on the ready-valid source side to prevent
the source side from sending the same request multiple times.
These two modifications enable the ready-valid interfaces to
function correctly even with injected latency.

As a consequence of the initial token seeding and the target
modifications, the simulation results are no longer cycle-exact
with respect to the unmodified target-RTL and are only cycle-
approximate. Nevertheless, as the modified target-RTL is also
wrapped in an LI-BDN, the performance results obtained in
the fast-mode are still cycle-exact with respect to the modified
target-RTL resulting from these systematic transforms. We
investigate the performance and accuracy tradeoffs of fast-
mode in Section VI.

A compelling use case for fast-mode would be to partition
modules that are attached to buses such as core tiles or MMIO
devices as they interface with the bus via decoupled interfaces.
The benefit is that these modules are normally coarse-grained
enough such that they provide significant resource savings
while having a narrow partition boundary width, which is
beneficial to simulation performance.

Wrapper3

R2R3 Protocol
Converter2

Protocol
Converter3

Core
Tile2

Core
Tile3

Wrapper2

Wrapper1
Wrapper0

R0 R1 Protocol
Converter1

Protocol
Converter0

CDC1CDC0

Core
Tile1

Core
Tile0

CDC3 CDC2

Fig. 4: NoC-partition-mode wrapper boundaries. FireRipper
exploits the microarchitectural semantics of NoC router node
boundaries and uses them as compiler hints.

B. Module Selection

In addition to the partitioning mode, the user must provide
the number of FPGAs to map the target-design onto and the
set of modules that should be allocated to each partition.
The default method for mapping modules onto each partition
is to manually list out each module that should be put on
each FPGA, giving users fine-grained control over module
placement.

As an example of taking advantage of microarchitectural
semantics to more efficiently simulate designs, FireRipper also
allows users to divide modules across FPGAs using Network-
on-Chip (NoC) boundaries. Since NoC router boundaries are
credit based (i.e., latency-insensitive), and the output ports are
not combinationally dependent on any of the input ports, these
boundaries can be used as hints about where to partition a
design. Figure 4 depicts an SoC where the bus is configured
as a ring NoC topology. We use Constellation [32], a NoC
generator that supports a wide range of topologies and routing
schemes. The generated NoC from Constellation has three
layers: the physical layer which contains the router nodes,
the protocol layer which contains the protocol converters,
and the top layer which contains the clock domain crossings
(CDCs). To partition across NoC boundaries, instead of having
to explicitly specify the set of modules to group together,
FireRipper expects a set of router node indices that should
be grouped together in a partition. Figure 4 describes how
the NoC-partition-mode automatically selects the modules to
partition out given a set of router node indices.

1) The user specifies the router nodes that should be
partitioned out from an FPGA. These are R0 and R1
in Figure 4.

2) FireRipper automatically detects the neighboring router
nodes by traversing the circuit representation, and draws
boundaries between the NoC router nodes so that it can
wrap the group of router nodes to partition in a wrapper
module. This is Wrapper0 in Figure 4.

3) FireRipper traverses the circuit representation again, col-
lecting all the modules that are connected to the modules

ExtractReparent

A B

C

A B

C

FAME-1Grouping

A B

C
A B

A B

(a) FireRipper extracts the user specified modules by first pulling
them out to the top of the module hierarchy, wrapping them in one
module, and deleting all the other modules.

FAME-1

C

ExtractReparent

A B

C

A B

C

Grouping

A B

C
C

(b) Similar to the module extraction transform, FireRipper reparents
and wraps the modules to be removed. Once this is done, it deletes
the wrapped module.

Fig. 5: FireRipper’s main partitioning phase. Consists of
transformations to remove and extract modules from the
module hierarchy. The above example depicts how FireRipper
partitions the design onto two FPGAs.

inside the wrapper module, but are not connected to any
other modules. In the above figure, Protocol Con-
verter0 and Protocol Converter1 are selected
as they are connected to Wrapper0 but not to any
other router nodes. The selected modules, along with
Wrapper0 are wrapped once again into Wrapper1.

4) The previous step of collecting modules and wrapping
them is repeated recursively, until the wrapper reaches
the top of the module hierarchy. At this point, all
the modules that need to be partitioned out are nicely
grouped in a single wrapper module, Wrapper3 in the
above figure. The following FireRipper passes simply
extract Wrapper3 out of the module hierarchy to
perform partitioning.

C. Module Extraction and Removal

Once modules are selected, FireRipper extracts the modules
from the module hierarchy onto separate FPGA partitions as
shown in Figure 5. Figure 5a depicts the transform that extracts
the user specified modules (Modules A and B in the diagram)
out of the module hierarchy and into their own partition. This
consists of the following steps:

1) Reparent: Reparents the selected modules until they are
positioned at the top of the module hierarchy. While
reparenting, I/O ports are punched out as necessary. In
Figure 5a, after the “Reparent’ pass, we can see that the
user specified modules A and B are pulled out of the top
module while maintaining how their I/Os are connected
with respect to the original module hierarchy.

2) Grouping: Groups the selected modules according to the
number of FPGAs and wraps them in a wrapper module.
In the above example, we are partitioning the design

across 2 FPGAs and hence we wrap all the selected
modules into one wrapper module. After the "Grouping"
pass in Figure 5a, we can see that an extra module
(dark grey box) is created that contains the user specified
modules A and B as submodules.

3) Extract: Deletes all the modules except the wrapper
module. After the “Extract” pass in Figure 5a, we can
see that only the module containing module C is deleted,
and only the wrapper module is left.

4) FAME-1: The extracted wrapper module is passed on
to GG, which performs the FAME transformations. As
GG is able to ingest any FIRRTL based module and
transform it into an LI-BDN, no additional checking is
required on the extracted wrapper module.

Similarly, Figure 5b depicts how the user specified modules
are removed. All the steps are identical with the extraction case
except that we delete the wrapper module and only maintain
the rest of the module hierarchy. After modules are extracted
or removed, the aforementioned timing mode modifications
are applied before running the original FAME-1 LI-BDN
transformation.

IV. FPGA-TO-FPGA TRANSPORT MECHANISMS

In this section, we elaborate on the various FPGA-to-FPGA
transport mechanisms FireAxe uses to run on a variety of
platforms: on-premises FPGAs and public cloud FPGAs like
Amazon Web Services (AWS) EC2 F1.

A. Host-Managed PCIe

FireAxe can exchange tokens between FPGAs using a PCIe
DMA interface through the host CPU. In FireAxe each FPGA
partition has a corresponding C++ simulation driver running
on the host CPU that has the FPGA attached. The driver
can push tokens into the FPGA as well as pull tokens out
from the FPGA through the FPGA’s 512b-wide PCIe DMA
interface. Once a driver pulls a token from an FPGA, it is
sent to the receiving driver by writing to a shared memory
region, which in turn pushes the token into its corresponding
FPGA. The maximum simulation frequency is limited to 26.4
KHz due to software driver overhead and FPGA-to-host-CPU
PCIe latency. However, as this does not require any special
interconnect, it can be run on both cloud FPGA instances and
on-premises FPGAs.

B. Peer-to-peer PCIe

To improve simulation performance on AWS EC2 F1
cloud FPGAs, we utilize their direct peer-to-peer inter-FPGA
PCIe communication mechanism to reduce token exchange
latency [7]. The f1.16xlarge and f1.4xlarge instances each
contain multiple FPGAs (8 or 2 respectively) that can send and
receive AXI4 [28] transactions directly to/from one another
without going through the host. This provides the simulator
up to 1 MHz target frequency.

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

B
T

IO

L2
 $

M
em

or
y

Bu
s

L2
 $

L2
 $

L2
 $

Fig. 6: 24 core SoC partition. We partition an SoC containing
24 BOOM tiles (BT) onto 5 FPGAs by utilizing the NoC-
partition-mode. The entire simulation runs at 0.58 MHz.

C. Off-the-shelf QSFP Direct-Attach Interconnects

For on-premises FPGAs, we achieve an even lower link
latency by utilizing cheap (∼$25), off-the-shelf QSFP direct-
attach-cables [5] and integrating IP for the Aurora pro-
tocol [27] into the FPGA shell. This exposes an AXI4-
Stream [28] interface to FireAxe. This ultra-low-latency in-
terconnect enabled us to achieve a target simulation frequency
of 1.6 MHz. Simulation performance of different hardware
platforms is discussed in more detail in Section VI.

V. CASE STUDIES

In this section, to show FireAxe’s ability to support large-
scale SoC simulations across multiple FPGAs and the new
research opportunities that it enables, we perform several case
studies. Throughout this section, we use our local FPGA clus-
ter consisting of six Xilinx Alveo U250s [29] for evaluation.

A. Simulating a 24 Core SoC

As a demonstration of the simulation scale that FireAxe
enables, we simulate an SoC containing 24 OoO cores (BOOM
cores) [33] split across 5 FPGAs. As Figure 6 depicts, the
cores are connected as a ring topology where we use the NoC-
partitioning-mode to split the SoC across the NoC boundaries.
We place 6 BOOM tiles (a tile consists of a core, L1-I, L1-D,
and a crossbar) on four FPGAs and the SoC subsystem on
the last FPGA. The BOOM tiles are multi-threaded using the
FAME-5 transformation to save FPGA LUT resources.

We were able to boot Linux successfully on this SoC
and run various small binaries. However, after adding larger
binaries into the disk image via file system overlays, an RTL
bug manifested while loading data from the disk, causing a
supervisor binary interface trap after 3 billion cycles into the
simulation. To make sure that this is an RTL bug in BOOM,
we swapped the BOOM cores to in-order cores (the rest of the
SoC subsystem was identically configured) and retried booting
Linux with the same disk image. In this case, we were able
to boot Linux and successfully execute the larger binaries,
indicating an issue in the BOOM RTL. Running this SoC at
0.58 MHz enabled us to discover this previously unknown RTL
bug in less than 2 hours. The same SoC design ran at 1.26
KHz in a commercial software RTL simulator (giving FireAxe
a 460× speedup), which translates to weeks of simulation time

Large BOOM GC40 BOOM GC Xeon
Issue width 3 6 6
ROB entries 96 216 512
I-Phys Regs 100 115 280
F-Phys Regs 96 132 332

Ld queue entries 24 76 192
St queue entries 24 45 114

Fetch buffer entries 24 54 144
L1-I 32 kB 32 kB 32 kB
L1-D 32 kB 32 kB 48 kB

TABLE I: Major microarchitectural parameters across Large
BOOM, Golden-Cove-like BOOM (GC40 BOOM), and
Golden Cove Xeon (GC Xeon)

to trigger the same bug. We are currently in the process of
identifying the RTL bug.

B. Simulating a Large-Scale Out of Order Core

To show that FireAxe opens up new microarchitectural
design space exploration opportunities, we split a large OoO
core that does not fit on a single FPGA in half and place
it on two FPGAs. At the same time, this partition point
shows FireRipper’s capability of partitioning a design across
a wide range of user specified module boundaries as the
core contains many cross-module signals. We downsize the
microarchitectural parameters of Intel’s Golden Cove (GC) [3],
[11], [16] architecture by 40% and apply those parameters
to BOOM. We call this configuration of BOOM the GC40
BOOM.

The microarchitectural parameters of the cores are shown
in Table I. Furthermore, to provide a sense of how large these
cores are, we obtain ASIC area estimations of the BOOM
configurations by synthesizing the designs in a commercial
16nm process and compare them to published Xeon area
numbers [4]. To perform an apples to apples comparison,
we report the area of the core and the L1 caches for both
Xeons and BOOM variants. The area of Large BOOM, GC40
BOOM and Xeons are each 0.79mm2, 1.56mm2, and 9.13mm2

respectively. The numbers suggest that there is significant
room for microarchitectural innovation in open-source OoO
core design, and this innovation will be enabled by FireAxe’s
ability to model these growing cores by partitioning their
simulation across multiple FPGAs.

When building the bitstream monolithically for GC40
BOOM at 10MHz without partitioning, the bitstream build
fails due to congestion. Consequently, to simulate GC40
BOOM, we partition the core’s back-end (register renaming,
physical register file, execution units) and load-store-units
from the frontend (instruction fetch, branch prediction, fetch
buffer) and memory subsystem using the exact-mode. The
backend side of the design takes a total of 63% of the total
FPGA LUTs while the frontend and L1 cache side of the
target takes up 18% of the total FPGA LUTs and the number
of bits going through the partition interface is over 7000 bits.
By partitioning the core onto 2 FPGAs, we are able to boot
Linux with a overall target simulation frequency of 0.2 MHz.
To the best of our knowledge, this is the largest OoO core

0

100

200

300

400

500

600

700

800

aha-m
ont64

crc
32

edn

matm
ult-i

nt

minve
r

nbody

nettl
e-ae

s

nsic
hneu st ud

GeoMean

W
al

l C
lo

ck
 T

im
e

(u
s)

Large
GC40
Xeon

Fig. 7: Runtimes for Large BOOM, GC40 BOOM and Xeon
running Embench workloads.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Large GC40 Large GC40 Large GC40 Large GC40 Large GC40

matmult-int nettle-aes nbody st ud
Commit Ld Stall St Stall ALU Stall Frontend Misc

Fig. 8: CPI stack for Large BOOM and GC40 BOOM running
Embench workloads.

to be simulated on an FPGA-based simulation platform in
academia.

To understand how microarchitectural parameters affect core
performance, we take a step further by comparing the runtime
of Embench [8] between Large BOOM [33], GC40 BOOM
and Xeons in Figure 7 (Large BOOM and GC40 BOOM
were simulated while we ran Embench directly on Xeons).
For our BOOM variants, we assume a clock frequency of
3.4 GHz as that was the frequency at which the Xeons were
running when we ran Embench on them. We can see that GC40
BOOM consistently does well compared to Large BOOM with
a 15.8% increase in average IPC.

Furthermore, we report CPI stacks for Large BOOM and
GC40 BOOM by integrating a profiler called TIP [17] into
FireAxe. Figure 8 shows where the core is spending its cycles
for a selected set of benchmarks (these benchmarks were
selected to cover a wide range of performance changes). For
example, with nettle-aes we see that the instructions in the
core spend most of its cycles committing while for nbody the
instructions stall due to pipeline hazards. These trends are re-
flected in the performance of each benchmark as GC40 BOOM
achieves a 56% performance boost over Large BOOM for

60

80

100

120

140

160

180

200

1 2 4 6 8 10 12

Av
g.

 R
eq

 to
 R

es
p

La
t (

cy
cl

es
)

Number of Cores Forwarding Packets

Xbar Rd Lat
Xbar Wr Lat
Ring Rd Lat
Ring Wr Lat

Fig. 9: Leaky-DMA effect. The Y axis shows the average
request to response latency of each bus transaction. The read
latency (Rd Lat) is for when the NIC reads the TX packets
from the L2, while the write latency (Wr Lat) is for when the
NIC writes the RX packets into the L2. We see that as we
scale the number of cores, the average access latency goes up
due to cache and bus contention.

nettle-aes while achieving only 2% improvements for nbody.
This is due to the fact that LargeBOOM’s throughput is bound
by its instruction fetch bandwidth for nettle-aes and increasing
the frontend width by 2x significantly improves performance.
For nbody, increasing the instruction fetch bandwidth or the
OoO window does not help as most instructions are bound by
the execution unit’s throughput.

C. Investigating the Leaky-DMA Effect in Server SoCs

As a case study of FireAxe, we investigate how scaling the
number of cores results in the leaky-DMA effect, which has
been identified as a problem in modern datacenter servers [15],
[30]. Reproducing this effect requires simulating a large num-
ber of OoO cores, which would have been impossible without
FireAxe’s ability to perform large scale SoC simulations.

To reduce the latency between I/O devices and core, modern
servers support a feature called data direct I/O (DDIO) which
dedicates a configurable amount of last level cache (LLC)
ways to IO devices, enabling them to read or write data
directly into the LLC instead of DRAM. NICs use DDIO to
inject packets into the LLC to reduce the core’s packet access
latency. However, there are cases when the processor doesn’t
benefit from DDIO. Specifically, when the size of the buffers
used to interact between the core and the NIC is larger than the
LLC portion dedicated to DDIO, incoming packets will evict
cache lines containing packets that have not been processed
by the core. Consequently, cache lines ping-pong between the
LLC, DRAM and the core, a phenomenon called the leaky-
DMA problem [15].

To reproduce this effect, we modify our NIC [19] such that it
has a TX/RX queue corresponding to each core [25], enabling
each core to interact with the NIC independently. Furthermore,
we add hardware counters inside the NIC to measure the
average bus request to response latency targeting the LLC and

0

40

80

120

160

1 2 3 4

Ta
il

La
te

nc
y

(m
s)

GOMAXPROCS

GOMAXPROCS cores 95th percentile
GOMAXPROCS cores 99th percentile
1 core 95th percentile
1 core 99th percentile

Fig. 10: Garbage collection tail latency. When GOMAX-
PROCS is set to one, we observe a high tail latency as the
main goroutine is executed serially with the garbage collection
goroutine.

use that as the proxy for cache hit rates. To resemble the
LLC portion allocated to DDIO (2 cache ways), we resize the
L2 cache to 128kB (in our systems the L2 is the LLC). The
load is generated from the client SoC containing 12 in-order
cores placed on a single FPGA and all cores are used to drive
the NIC to send 1500B packets. The server SoC contains 12
BOOM cores split across 3 FPGAs and it simply forwards
the incoming packets back to the client SoC. We measure the
effects of cache and bus contention on the server SoC side by
varying the number of cores that are forwarding the packets
while dedicating a separate descriptor queue with 128 entries
for each core. Lastly, we perform comparisons between two
bus topologies: the cross bar based NoC (Xbar) and a NoC
where the routers are connected as a bidirectional torus with
a shortest path routing scheme (Ring).

We report the average request to response latency of each
bus transaction in Figure 9. The latency is measured from the
perspective of the NIC. That is, the read latency is the time
it takes for the NIC to read the TX packets from the L2,
while the write latency is the time for the NIC to write RX
packets into the L2. We can see the read and write latencies
increasing as the number of cores forwarding packets increase.
This is due to the increased memory footprint of the packet
buffers, resulting in cache contention on the limited DDIO
ways. Not only that, we can see that the write latency of the
cross bar bus (XBar) increases much more quickly than the
Ring bus topology, resulting in a longer latency when scaling
up to more than 6 cores. This shows that a NoC has a higher
per bus transaction overhead compared to a cross-bar under
low load, but it scales better under higher load.

D. Replicating Latency Spikes Induced by Garbage Collection
in a Multi-core SoC

In this subsection, we replicate the latency spikes induced
by garbage collection for the Go programming language
(Golang). Replicating this effect requires full stack system

level interactions between the user application, OS and hard-
ware. The target SoC that we simulate contains four 5-wide
OoO BOOM cores (where each takes up 25% of the Xilinx
U250 LUT resources), and we split it across 2 FPGAs.

As the benchmark, we run a Golang application where the
main goroutine is triggered by a periodic 10 microsecond
tick [23]. This goroutine allocates objects in the heap recur-
sively to stress the garbage collector. In this application, the
tick as well as the main goroutine is delayed sporadically with
respect to the 10 microsecond reference timer, and we measure
the tail latency of this delay. We change the number of OS
threads allocated to this Golang application via a flag exposed
by the Golang runtime (GOMAXPROCS) [2] to see how the
Golang runtime can exploit the extra threads. Additionally, we
vary the CPU affinity such that the Linux scheduler can choose
to run the threads on either one core or GOMAXPROCS cores.
We report the 95% and 99% latency in Figure 10.

First of all, we can see that the 99% tail latency is very high
when GOMAXPROCS is set to one. This is due to the fact that
when there is only one OS thread allocated to this application,
all the goroutines including the garbage collection goroutine
are executed serially within a single thread context, delaying
the execution of the main goroutine. On the other hand, when
multiple OS threads are allocated to the Golang runtime, the
runtime can distribute the goroutines to multiple OS threads
which are scheduled by the Linux scheduler. Consequently,
instead of waiting for all the previous goroutines to finish
executing, the main goroutine can rely on the Linux scheduler
to schedule the thread that it is mapped onto to start executing.

A surprising result is that the tail latency is lower when
we pin this application to a single core rather than providing
the Linux scheduler a pool of cores to run the application
on. We hypothesize that, when running this benchmark on our
system, the benefit of having higher cache affinity by running
all the OS threads in a single core is larger than the benefit of
running the OS threads across multiple cores while suffering
from cache coherency.

To support our hypothesis, we run the same benchmark on
our Xeon servers with GOMAXPROCS set to 2. When we
allocate 2 cores from the same NUMA node, the 99% latency
is 28 ms. In contrast, when allocating 2 cores from different
NUMA nodes to exaggerate the inter-core communication
latency, the 99% latency goes up to 42 ms. This shows that
the inter-core communication overhead can increase the tail
latency, and thus corroborates our suspicion that having a weak
memory subsystem with a high cache coherency overhead
can lead to the above effect. Nevertheless, we leave deeper
investigation for future work.

VI. SIMULATION PERFORMANCE AND VALIDATION

Understanding the throughput of a simulator is crucial as
it is tightly coupled to the design iteration cycle. In this
section we perform various sweeps to better understand the
performance characteristics of FireAxe.

0.0
0.3
0.5
0.8
1.0
1.3
1.5
1.8
2.0
2.3

618 1236 2476 4960 9936

Si
m

ul
at

io
n

Fr
eq

ue
nc

y
(M

Hz
)

Partition Interface Width (bits)

Exact-10MHz Exact-50MHz Fast-10MHz
Fast-50MHz Fast-70MHz

Fig. 11: QSFP performance sweeps. Simulation performance
of FPGAs communicating via QSFP direct-attach-cables ac-
cording to the bitstream frequency, partition interface width,
and partition mode.

A. Simulation Performance Characteristics

There are four major knobs that affect the performance of
FireAxe. We elaborate on how each knob affects performance.

• Interconnect : A high bandwidth, low latency interconnect
improves communication performance.

• Partitioning mode : This affects how may times a token
has to cross the interconnect to simulate a target cycle.

• Module selection : The module selection dictates the
width of the partitioned boundary. As the partition in-
terface gets wider, the performance goes down. This is
because the overhead of having to (de)serialize the bits
to send and receive over the inter-FPGA communication
link scales with the interface width.

• Bitstream frequency : As the bitstream frequency goes
up, the performance improves as it takes less time for
the simulator to produce/consume tokens. Furthermore,
the (de)serialization overhead decreases since that logic
is implemented as a part of the bitstream.

The complexity of the target logic along the partition
boundary does not affect performance as long as the compiler
requirements for each mode is met : i.e., limited combi-
national dependency chain length in the exact-mode, and
latency insensitive boundaries in the fast-mode. We present
a comprehensive set of performance sweeps in the following
sections.

1) Partitioning Across On-premises FPGAs with QSFP
Direct-Attach-Cables: First, we sweep over three variables
that affect simulation performance when partitioning the de-
sign across two FPGAs: the number of bits going through the
interface, the frequency at which the target bitstreams were
built, and the compiler mode by which FireRipper performed
the partition. The interface width is varied by changing the
number of core tiles that are partitioned out of the SoC. Note
that the SoC in this experiment is a bus based design (core
tiles are connected by a cross-bar) and we are using the default
module selection mode and not the NoC-partition-mode to

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

618 1236 2476 4960 9936

Si
m

ul
at

io
n

Fr
eq

ue
nc

y
(M

Hz
)

Partition Interface Width (bits)

Exact-10MHz Exact-50MHz Exact-90MHz
Fast-10MHz Fast-50MHz Fast-90MHz

Fig. 12: PCIe peer-to-peer performance sweeps. Simulation
performance of FPGAs communicating via PCIe peer-to-peer,
according to the bitstream frequency, partition interface width,
and partition mode.

pull out the core tiles. The inter-FPGA communication is
performed by QSFP direct-attach-cables.

Figure 11 shows the results of the performance sweeps.
There are two major overheads when transporting tokens
between FPGAs: the inter-FPGA communication latency and
the overhead of (de)serializing the AXI-Stream data exposed
by the Aurora IP into simulator tokens. When the simulator is
partitioned by the exact-mode, the inter-FPGA communication
latency dominates the (de)serialization overhead as tokens
have to traverse the inter-FPGA link twice. Similarly for the
fast-mode, the inter-FPGA communication latency dominates
for partition interface widths smaller than 1500 bits, providing
us with around a 2x speedup over the exact-mode. However,
once the partition interface gets wider than 1500 bits, the
performance benefits of fast-mode becomes marginal as the
(de)serialization overhead starts becoming on par with the
inter-FPGA communication latency.

2) Partitioning Across Cloud FPGAs with Peer-to-Peer
PCIe: We report the performance of FireAxe in Figure 12
when the design is split across 2 FPGAs communicating
via the PCIe peer-to-peer [7] communication scheme, while
sweeping over the same variables as in VI-A1. The overall
performance characteristics are similar with the on-premises
FPGA setup: exact-mode’s performance stays relatively stable,
fast-mode gives around a 2x performance boost over exact-
mode until the interface width becomes wide enough such that
the (de)serialization overhead becomes significant. Overall,
FireAxe’s performance on the cloud is 1.5x lower than on
the local FPGA setup due to the higher inter-FPGA commu-
nication latency.

3) Partitioning Across More than 2 FPGAs on Local FP-
GAs: We also perform sweeps to understand how the number
of FPGAs connected in a ring affects the NoC-partition-
mode’s performance in a local FPGA setting. The width of
the interface stays constant as we are partitioning across the
NoC router boundaries. We report the performance trends
in Figure 13. As can be seen, even though each FPGA is

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

3 4 5 6

Si
m

ul
at

io
n

Fr
eq

ue
nc

y
(M

Hz
)

Number of FPGAs Connected as a Ring

10MHz
30MHz
50MHz
70MHz

Fig. 13: FPGA count performance sweeps. Simulation perfor-
mance according to the number of FPGAs connected as a ring
for a particular target bitstream frequency.

exchanging tokens only with its neighboring FPGAs in the ring
connection, the performance drops as the number of FPGAs in
the ring increases due to minor timing issues regarding token
exchange.

B. Hiding Communication Latency via FAME-5

In this subsection, we explain how we amortize the com-
munication costs between FPGA partitions by utilizing the
FAME-5 transformation. FAME-5 [22] is a technique to multi-
thread duplicate modules in the design. Given N duplicate
module instances, it shares the combinational logic while
the sequential elements are replicated N times. A hardware
scheduler is added to select the sequential elements to update
for a given cycle. This trades off simulation performance with
FPGA resource consumption as the simulator has to spend N
host FPGA cycles to simulate a single target cycle.

In FireAxe’s case, we utilize the FAME-5 transformation
to amortize the inter-FPGA communication latency between
partitions. Since the inter-FPGA communication latency is
significantly higher than the N-1 extra cycles spent simulating
a multi-threaded module, the communication penalty of sim-
ulating a large, multi-threaded design is almost identical as
simulating a single module without any multi-threading. This
implies that simulating a larger design with duplicate modules
comes with near-zero overhead.

The understand the impact of FAME-5 on FireAxe’s per-
formance, we increase the size of the SoC by increasing the
number of BOOM tiles. When there are N BOOM tiles in
the SoC, we partition all of them out onto a separate FPGA
and apply the FAME-5 transformation on all of those tiles.
The simulation performance results are shown in Figure 14.
We fix the BOOM tile side of the FPGA frequency to 15MHz
while varying the SoC subsystem side of the FPGA frequency
from 20MHz to 30MHz. By increasing the number of tiles
from one to six, we are simulating a larger design (more
cores) while saving FPGA resource consumption, without
significantly sacrificing simulation performance. This type of

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6

Si
m

ul
at

io
n

Fr
eq

ue
nc

y
(M

Hz
)

Number of FAME-5 BOOM Tiles

Sim 20MHz-15MHz

Sim 30MHz-15MHz

Fig. 14: Amortizing communication via FAME-5. Measures
simulator performance according to the number of BOOM tiles
that are multi-threaded. As we increase the number of tiles
from one to six, the simulation performance degrades by less
than 2x. This is a conservative estimate as the number of bits
going off the FPGA increases linearly with the number of tiles
(threads), negatively affecting simulation performance.

scaling relationship is enabled by the ability to amortize inter-
FPGA communication latency by FAME-5. Not only that, this
is a conservative estimate as the number of bits going off the
FPGA increases linearly with the number of tiles (threads),
negatively affecting simulation performance.

C. Simulator Validation

As a validation of our simulator compared to a non-
partitioned setup, we partition three different SoC setups using
exact-mode and fast-mode and validate the runtime compared
to its equivalent monolithic FireSim simulation. First we test
two accelerator SoCs, one with an encryption accelerator
(Sha3Accel), and another with a machine-learning accelerator
(Gemmini), and separate each accelerator onto a separate
FPGA. We run each accelerator SoC and measure the time it
takes for the accelerator to perform the operation (encryption
for Sha3Accel and a convolution operation for Gemmini). The
final SoC configuration is partitioning a core tile out of an
SoC (Rocket tile). We boot Linux on this SoC and terminate
it immediately after it is booted and measure the total number
of cycles from the start to the end of the simulation.

We report the cycle-count error with respect to each setup’s
monolithic FireSim simulations in Table II. The monolithic
simulation and exact-mode simulation took the exact same
number of cycles. On the other hand, the cycle-counts do not
match in the fast-mode because of the target modifications
made to improve simulation performance. This is due to the
partition boundary modifications and the extra cycle of latency
injected in between the boundaries. The error rate depends
on the workload and the degree of which the module is
sensitive to the latency in between the boundary. For example,
Sha3Accel’s workload is relatively small and memory latency
bound which makes is more sensitive to the target modifica-
tions compared to Rocket and Gemmini.

Monolithic
(Cycles)

Exact-Mode
|Error| (%)

Fast-Mode
|Error| (%)

Rocket tile
(Linux boot) 3840921346 No Error 0.98

Sha3Accel
(Encryption) 302 No Error 6.62

Gemmini
(Convolution) 4505 No Error 0.22

TABLE II: Simulator validation. Cycle-count comparisons
with monolithic FPGA simulations vs simulations partitioned
by exact-mode and the fast-mode.

VII. RELATED WORK

In this section, we present previous tools that accelerate
RTL simulation, and contrast them with FireAxe.

A. Industry Simulation Tools

ProtoCompiler [14] is a multi-FPGA partitioning compiler,
targeting FPGAs. The Palladium Emulation [1] platform also
has an accompanying compiler called Automated Parallel
Partition Compile (PPC). Unlike FireAxe, which utilizes off-
the-shelf hardware components or inexpensive pay-as-you-go
cloud FPGAs, these industry solutions come at a substantial
cost and are thus unsuitable for academic research, startups,
or early-stage co-design. IBM has also demonstrated a multi-
FPGA simulator where they compose LI-BDNs to simulate
larger designs [6] like FireAxe. However, their methodology
requires a custom FPGA platform and is not open-sourced for
the community.

B. Academic FPGA-based Simulation Tools

FireSim is an FPGA-accelerated RTL simulator. Since the
initial release of FireSim, the proliferation of open hardware
IP has enabled researchers to generate new SoC configurations
that no longer fit in a single FPGA. FireAxe builds on
top of FireSim to enable partitioning of large designs onto
multiple FPGAs, overcoming the single-FPGA limitation for
monolithic RTL designs.

SMAPPIC [10] is an FPGA prototyping platform. It does
not perform clock decoupling, which limits performance vali-
dation capabilities and results in non-deterministic modeling.
Also, although SMAPPIC can place designs on multiple
FPGAs, the partition points are limited to tile boundaries.
On the other hand, FireAxe can partition designs across a
wider range of module boundaries. MEG [31] is an FPGA-
hosted simulator that focuses on the design space exploration
of memory technologies. Unlike FireAxe, it is a single-FPGA
simulation platform and does not automatically transform
ASIC RTL into FPGA simulators.

C. Accelerating Performance of RTL Simulations

RepCut [26] proposes a novel circuit partitioning approach
to efficiently parallelize software RTL simulations. They re-
duce the thread synchronization overhead by replicating nodes
between partitions to remove intra-cycle dependencies, as
well as by proposing a better prediction of each partition’s

execution time. Our work is orthogonal as we are partition-
ing our design because of FPGA resource constraints while
they partition the design to extract thread level parallelism.
However, there may be synergies in employing this automated
partitioning approach in FireAxe in the future.

LiveSim [21] is an RTL simulator that drastically reduces
the design iteration time. First, it uses incremental compilation
to reduce the compile time, as well as checkpointing so that the
simulator can verify if each region is reusable with the current
design and skip to parts where results start diverging. Although
LiveSim is useful during initial RTL development, it is still
limited by the software RTL simulation speed, preventing it
from running realistic benchmarks.

Recent work such as Elsabbagh et. al. [12] and Manti-
core [13] partition hardware designs via custom compilers
and map them down to custom simulation ASICs to extract
fine-grained parallelism inherent in RTL simulations. These
works are orthogonal to FireAxe as FireAxe utilizes host-clock
decoupling to directly map RTL designs onto widely-available
FPGA platforms.

VIII. DISCUSSION AND FUTURE WORK

In this section, we suggest how FireAxe can be utilized
for future research and suggest future avenues for further
improving FireAxe’s simulation capabilities.

A. Hybrid Cloud Usage Model of FireAxe

When deciding between cloud and on-premises FPGAs,
three key factors stand out. Firstly, the cost: Cloud FPGAs
charge by the hour, while on-premises setups require an
upfront investment. Secondly, FPGA capacity affects design
requirements, with our experience showing local Alveo U250s
offering 50% more LUTs compared to cloud-based VU9Ps due
to fixed IP in cloud FPGAs. Lastly, simulation performance
varies, with on-premises setups offering better performance
thanks to high-bandwidth, low-latency QSFP connections be-
tween FPGAs, as demonstrated in Sections VI-A1 and VI-A2.

Drawing from these observations, we advocate for a hybrid
model encompassing both cloud and on-premises resources
to facilitate efficient development utilizing FireAxe. Initially,
during the developmental phase, users can leverage the on-
premises setup to minimize simulation latency, enabling ag-
ile identification of functional and performance-related bugs
within their designs. Subsequently, as the design progresses
and there is a need to conduct a multitude of benchmarks
to obtain performance metrics, users can seamlessly expand
their simulations by deploying additional FPGA instances in
the public cloud.

B. Further Automating the Partitioning Flow

In the future, the FireAxe flow can be augmented in such
a way that it involves less user guidance. To support this
feature, FireRipper would need to be able to make rough per-
FPGA resource consumption estimates based on the RTL-level

circuit representation to provide users quick feedback about
whether the partition will fit on an FPGA or not. Using existing
graph partitioning tools to automatically search for boundaries
that are amenable to partitioning would be another possible
direction in the future.

C. Supporting Diverse On-Premises FPGA Platforms and
Topologies

In this work we primarily used the Xilinx Alveo U250
boards [29] as our on-premises FPGA platform. However,
FireAxe is agnostic to the FPGA board as long as there is
a common protocol between FPGAs that enables inter-FPGA
communication. We leave the support of other on-premises
FPGAs for future work.

Additionally, the on-premises FPGA connection topologies
are currently limited by the number of QSFP cages available
to directly connect FPGAs (the Xilinx Alveo U250 board
supports two QSFP cages limiting the topology to a ring
or binary tree-like structure). We can overcome this limit by
exploring other inter-FPGA communication protocols such as
Ethernet that support routing packets to any other FPGA via
a central switch.

IX. CONCLUSION

To cope with the challenge of simulating designs with
growing complexity, we built FireAxe, which serves as a push-
button solution to map FireSim simulations of large monolithic
RTL designs across multiple FPGAs, bypassing the capacity
constraints of a single FPGA. FireAxe’s compiler FireRipper,
provides users with fine-grained control over partitioning gran-
ularity, as well as the ability to easily trade-off simulation
performance and accuracy. To democratize access to parti-
tioned FPGA simulations, FireAxe supports both public cloud
FPGAs on AWS EC2 F1 and on-premises FPGA clusters with
a range of FPGA-to-FPGA communication links. As shown
throughout this work, FireAxe enables full system simulations
of hardware designs with unprecedented scale and provides
high fidelity, high speed, and deterministic simulations, serving
as a highly accessible solution for running full-stack large-
scale hardware simulations.

ACKNOWLEDGMENT

We would like to thank Vighnesh Iyer, Jerry Zhao, David
Biancolin, Christopher Batten, and the anonymous reviewers
and artifact evaluators for their valuable feedback. We would
also like to thank Björn Gottschall for answering questions
about TIP [17]. Research was partially funded by the U.S.
Government under the DARPA RTML program (contract
FA8650-20-2-7006) and NSF CCRI ENS Chipyard Award
2016662 and NSF 2303735: Pathways to Enable Open-Source
Ecosystems (POSE) and SLICE Lab industrial sponsors and
affiliates. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

APPENDIX

A. Abstract

This artifact appendix describes how to reproduce the
case studies and performance sweeps of FireAxe from
Section V and Section VI. All of this code will
be upstreamed in the main FireSim github repository
(https://github.com/firesim/firesim).

B. Artifact check-list (meta-information)

• Hardware: Server with at least four Xilinx U250 FPGAs
connected by QSFP cables.

• Metrics: Simulation throughput of FireAxe and simulation
results from the case studies.

• Output: Figures about the above metrics.
• Experiments: FireAxe simulations of various large scale SoC

designs explained in Section V and Section VI.
• How much disk space required?: 300GB.
• How much time is needed to prepare workflow?: 1 hour

(scripted installation).
• How much time is needed to complete experiments?: 40

hours (fully automated).
• Publicly available: Yes.
• Code licenses: Several, see download.
• Archived: https://zenodo.org/records/11005136

C. Description

1) How to access: The artifact consists of one main git
repository (fireaxe-firesim) which can be found on Zenodo
(https://zenodo.org/records/11005136). This repository is a
fork of the FireSim simulation environment. The dependencies
are automatically pulled when running the installation script
for this repository.

2) Hardware dependencies: To reproduce the experiments
we will be using a local FPGA server with four Xilinx U250s
installed. These FPGAs are connected by QSFP direct attach
cables in a particular topology (5 FPGAs are connected in a
ring).

D. Installation

First we need to login to a FPGA server containing four
Xilinx U250 FPGAs.

$ ssh 〈user-name〉@〈fpga-server-name〉

From this point forward, all commands should be run
on the FPGA server machine.

Next, we will create a tmux session so that the processes
are not killed on a ssh disconnection. Also we will create a
directory where you will download the artifacts from Zenodo.

$ tmux
$ cd /scratch
$ mkdir /scratch/〈user-name〉
$ cd /scratch/〈user-name〉

Fetch the top-level repository from Zenodo.

$ export ZENODO=https://zenodo.org/records/11005136
$ curl -Ls -w %url_effective -o a $ZENODO > DL_url
$ wget $(cat DL_url)/files/fireaxe-firesim.zip
$ unzip fireaxe-firesim.zip

At this point, we need to install conda as FireSim depends
on it to download dependencies. You can install miniconda by
running the following commands:

$ cd fireaxe-firesim/fireaxe-scripts
Follow the instructions in the prompt
Set the installation directory to /scratch/〈user-name〉
$ sh Miniconda3-latest-Linux-x86_64.sh
$ conda install -n base conda-lock==1.4.0

Next, run the following commands which will initialize all
the following dependencies and setup FireSim and Chipyard.
We will be using pre-built bitstreams which will be down-
loaded in this step as well.

$ cd fireaxe-firesim
$./build-setup.sh --skip-validate

This step should take around an hour. Upon successful
completion, it will print:

Setup complete!

Once this is complete, we will activate the conda environ-
ment that was created in the previous step:

$ source sourceme-manager.sh --skip-ssh-setup

Now, we will initialize the FireSim manager:

$ firesim managerinit --platform xilinx_alveo_u250

At this point, the installation of FireSim and Chipyard to
run FireAxe is finished.

Finally we need to make sure that we can ssh into localhost
without a password. To setup the ssh-keys, run the following
commands:

$ cd ∼/.ssh
$ ssh-keygen -t ed25519 -C "username.pem" -f username.pem
[create passphrase : press enter without adding a password]
$ cd ∼/.ssh
$ cat username.pem.pub » authorized_keys
$ chmod 0600 authorized_keys
$ cd ∼/.ssh
$ ssh-agent -s > AGENT_VARS
$ source AGENT_VARS
$ ssh-add username.pem

The following command should not prompt for a password
nor fail:

$ ssh localhost

Now, logout from the localhost ssh session to return to the
original environment:

$ logout

E. Experiment workflow

We will now run the full artifact evaluation script which
will do the following for each set of experiments:

1) Compile the target software to run on the simulated
designs.

2) Compile the host drivers that controls the advancement
of the simulation.

3) Flash the FPGAs with pre-built bitstreams.
4) Run FireAxe simulations.
5) Process the simulation results and reproduce the plots in

the paper.
Now, run the full artifact evaluation script:

$ cd fireaxe-scripts
$./run-ae-full.sh

This step should take around 40 hours. Upon successful
completion, it will print

run-ae-full.sh complete!

F. Evaluation and expected results

The above steps will produce a set of plots generated by
running run-ae-full.sh. The plots are located in the fireaxe-
scripts/generated-plots directory. The raw results of these
experiments are included in the fireaxe-scripts/perf-results and
fireaxe-scripts/ddio-results directory.

1) Figure 7 : ‘figure-7-wallclocktime.png’
2) Figure 8 : ‘figure-8-cpistack.png’
3) Figure 9 : ‘figure-9-ddio.png’
4) Figure 10 : ‘figure-10-go-gc.png’
5) Figure 11 : ‘figure-11-qsfp-perf-sweep.png’
6) Figure 14 : ‘figure-14-fame5-perf-sweep.png’
We do not run the EC2 F1 performance sweeps Figure 12

as it is redundant to Figure 11. We also do not run the
performance sweeps according to the FPGA count (Figure 13)
and the ring-NoC configuration of the DDIO experiment
(Figure 9) as it requires manually rewiring the FPGAs on the
server. However, the bitstreams for the above two experiments
are included in the downloaded Zenodo repository for testing.

The results of Figure 11 and 14 may look different the paper
as the performance of the driver code running on the host
machine can alter the overall throughput of FireAxe. However,
the difference should not be significant.

G. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] “Cadence palladium z1 enterprise emulation platform,”
https://www.cadence.com/content/dam/cadence-www/global/en_US/
documents/tools/system-design-verification/palladium-z1-ds.pdf.

[2] “Go-runtime-documentation,” https://pkg.go.dev/runtime, accessed:
2023-11-20.

[3] “Golden cove,” https://en.wikipedia.org/wiki/Golden_Cove, accessed:
2023-10-15.

[4] “Skylake (server) - microarchitectures - intel,” https://en.wikichip.org/
wiki/intel/microarchitectures/skylake_(server), accessed: 2023-10-15.

[5] 10Gtek, “Qsfp28 passive copper cable assembly,” https://www.10gtek.
com/qsfp28dac, 2019, accessed: 2023-10-15.

[6] S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B. Parker,
T. Roewer, P. Saha, T. Takken, and J. Tierno, “A cycle-accurate,
cycle-reproducible multi-fpga system for accelerating multi-core
processor simulation,” in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
153–162. [Online]. Available: https://doi.org/10.1145/2145694.2145720

[7] awslabs, “Using-pcie-peer2peer,” https://github.com/awslabs/aws-fpga-
app-notes/tree/master/Using-PCIe-Peer2Peer/README.md, 2021, ac-
cessed: 2023-10-15.

[8] J. Bennett, “Embench™: A modern embedded benchmark suite,” https:
//www.embench.org/, accessed: 2023-10-15.

[9] D. Biancolin, “Automated, fpga-based hardware emulation of dynamic
frequency scaling,” Ph.D. dissertation, UC Berkeley, Spring 2021.

[10] G. Chirkov and D. Wentzlaff, “Smappic: Scalable multi-fpga architecture
prototype platform in the cloud,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ser. ASPLOS 2023.
New York, NY, USA: Association for Computing Machinery, 2023, p.
733–746. [Online]. Available: https://doi.org/10.1145/3575693.3575753

[11] clamchowder, “Popping the hood on golden cove,” https:
//chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/,
accessed: 2023-10-15.

[12] F. Elsabbagh, S. Sheikhha, V. A. Ying, Q. M. Nguyen, J. S. Emer,
and D. Sanchez, “Accelerating rtl simulation with hardware-software
co-design,” in Symposium on Microarchitecture (MICRO’23), 2023.

[13] M. Emami, S. Kashani, K. Kamahori, M. S. Pourghannad, R. Raj, and
J. R. Larus, “Manticore: Hardware-accelerated rtl simulation with static
bulk-synchronous parallelism,” 2023.

[14] B. Erickson, “Solving the asic prototype partition problem with synopsys
protocompiler,” Jul 2014.

[15] A. Farshin, A. Roozbeh, G. Q. M. Jr., and D. Kostić, “Reexamining
direct cache access to optimize I/O intensive applications for
multi-hundred-gigabit networks,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, Jul. 2020, pp.
673–689. [Online]. Available: https://www.usenix.org/conference/atc20/
presentation/farshin

[16] A. Frumusanu, “Golden cove microarchitecture (p-core) exam-
ined,” https://www.anandtech.com/show/16881/a-deep-dive-into-intels-
alder-lake-microarchitectures/3, accessed: 2023-10-15.

[17] B. Gottschall, L. Eeckhout, and M. Jahre, “Tip: Time-proportional
instruction profiling,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
15–27. [Online]. Available: https://doi.org/10.1145/3466752.3480058

[18] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
firrtl ground: Hardware construction languages, compiler frameworks,
and transformations,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2017, pp. 209–216.

[19] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs,
B. Nikolic, R. Katz, J. Bachrach, and K. Asanovic, “Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 29–42.

[20] A. Magyar, D. Biancolin, J. Koenig, S. Seshia, J. Bachrach, and
K. Asanović, “Golden gate: Bridging the resource-efficiency gap be-
tween asics and fpga prototypes,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[21] H. Skinner, R. Trapani Possignolo, S.-H. Wang, and J. Renau, “Livesim:
A fast hot reload simulator for hdls,” in 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2020, pp. 126–135.

[22] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanović, and
D. Patterson, “A case for fame: Fpga architecture model execution,” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture, ser. ISCA ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 290–301. [Online]. Available:
https://doi.org/10.1145/1815961.1815999

[23] tarm, “runtime: Gc causes latency spikes with single processor,” https:
//github.com/golang/go/issues/18534, 2017, accessed: 2023-10-15.

[24] M. Vijayaraghavan and Arvind, “Bounded dataflow networks and
latency-insensitive circuits,” in 2009 7th IEEE/ACM International Con-
ference on Formal Methods and Models for Co-Design, 2009, pp. 171–
180.

[25] A. Viviano, “Introduction to receive side scaling,” https://learn.
microsoft.com/en-us/windows-hardware/drivers/network/introduction-
to-receive-side-scaling, 2022, accessed: 2023-10-15.

[26] H. Wang and S. Beamer, “Repcut: Superlinear parallel rtl simulation
with replication-aided partitioning,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ser. ASPLOS 2023.
New York, NY, USA: Association for Computing Machinery, 2023, p.
572–585. [Online]. Available: https://doi.org/10.1145/3582016.3582034

[27] Xilinx, “Logicore ip aurora 64b/66b,” 2011, accessed: 2023-10-15.
[28] Xilinx, “Axi reference guide,” 2017, accessed: 2023-10-15.
[29] Xilinx, “Alveo u200 and u250 data center accelerator cards data sheet

(ds962),” 2023, accessed: 2023-10-15.
[30] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and N. S.

Kim, “Don’t forget the i/o when allocating your llc,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 112–125.

[31] J. Zhang, Y. Liu, G. Jain, Y. Zha, J. Ta, and J. Li, “MEG: A RISCV-based
system simulation infrastructure for exploring memory optimization
using FPGAs and Hybrid Memory Cube (best paper nominee),” in 2019
IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (**FCCM**), April 2019.

[32] J. Zhao, A. Agrawal, B. Nikolic, and K. Asanovic, “Constellation:
An open-source soc-capable noc generator,” in 2022 15th IEEE/ACM
International Workshop on Network on Chip Architectures (NoCArc).
Los Alamitos, CA, USA: IEEE Computer Society, oct 2022, pp.
1–7. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
NoCArc57472.2022.9911299

[33] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” May 2020.

